研究背景

一般的な伝熱促進法として, 伝熱面にフィン を取り付ける方法が広く利用されている.

<この方法の導入に伴い生じる問題>

- フィン付き管の製作性
- 加工に伴う構造強度の検討
- 定期的な保守検査

伝熱面を加工せず,効果的に伝熱促進が行え流体 る方法として本手法を検討してきた.

<本手法による伝熱促進の利点>

- 非加工のため構造強度に影響なし
- 追加的な導入が容易に可能
- 設計時間や費用の削減が可能
- 保守検査が不要

YUniversity of Yamanashi

研究背景

実験装置

YUniversity of Yamanashi

実験条件 | 空げき率の相違

作動流体	空気
------	----

加熱条件 熱流束一定 (ヒータ出力:140 W,壁面温度 ≤ 200 °C)

- 流動条件 Re = 700, 1200, 3000, 5000, 8000
- 充填条件 線径一定(0.5mm)

Material	Wire diameter d _w [mm]	Wire length I _w [m]	Channel porosity ϵ_{CH}	Surface area A [m²]
Cu		15	0.994	0.1021
		12.5	0.995	0.0982
	0.5	10	0.996	0.0942
		7.5	0.997	0.0903
		5	0.998	0.0864
		2.5	0.999	0.0825
N/A	-		1.000	(Pipe : 0.0785)

University of Yamanashi

実験結果 | 空げき率の相違

空げき率0.996, 0.997付近で圧力損失の増大を抑制しつつ, 伝熱性能の向上が期待できる. 実験条件により空げき率の最適値が存在すると考えられる.

YUniversity of Yamanashi

実験条件 | 線径の相違

Material Wir	dia. Wire length Channel porosity Surface area Number of	
充填条件	空げき率一定(0.997)	
流動条件	ポンプ動カー定 (多孔性材料非充填時のレイノルズ数:約600)0)
加熱条件	熱流束一定 (ヒータ出力:140 W, 壁面温度 ≦ 200 °C)	
作動流体	空気	

Materiai	d _w [mm]	I _w [m]	Е СН	A [m²]	experiments	
	0.3	20.8		0.0982		
Cu	0.5	7.5	0.997	0.0903	4	
	0.7	3.8		0.0870		
N/A	-	-	1.000	(Pipe : 0.0785)	1	

変動係数 C.V.

 $C.V. = \frac{\sqrt{\sigma^2}}{\bar{x}}$

変動係数C.V.は,標準偏差を平均値で割った値のことで,単位の 異なるデータのばらつきや,平均値に対するデータとばらつきの 関係を相対的に評価する際に用いる無次元数.

7

5

実験結果 | 線径の相違

実験結果 | 流量による考察

流量 [l/se	c]			除熱量	の算出式	
Wire dia.	[<i>mm</i>]	φ0.5	φ0.7	0 - 0		(Т Т
No.1	2.19	2.32	2.26	Q – U	^p ave ^P ave ^V C	H^{I} out $-I$ in
No.2	2.18	2.27	2.28	線径0.	3mf @場客圧」	北熱 [J/kg K]
No.3	2.24	2.28	2.26	流量の	ρ_{ave} 二流体 減火	平均密度 [kg/m ³ 音略熱量の低
No.4	2.19	2.25	2.29	綽深∩	CH 中市政 5mmのは海路	出口温度 [°C]
Average v	alue <mark>2.20</mark>	2.28	2.27			へ口温度 [°C] "···
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	流の変化?	际熱重の低
Wire dia. d _w [mm]	Ratio of heat removal	Flov V [l,	v rate /sec]	Inlet temp. T _{in} [°C]	Outlet temp. T _{out} [°C]	Difference in temp. ∆T[°C]
φ0.5	1.149	2.	.27	31.8	65.8	34.0
φ0.7	1.258	2.	.28	31.6	69.0	37.4

線径0.5mmと0.7mmでは流動状況が異なっている可能性がある.

線径0.5mmでは流動抵抗が強く,銅細線充填層の流路中心部を流れる流体が少な かったため、効率的に熱交換が行えなかったと推測した.

YUniversity of Yamanashi

流速分布に関して

9

実験結果 | 流速計測

各計測点と平均流速との差の一例(青字は平均流速以下)

線径0.5mm (平均除熱量81.9W)

	• • •	51.5.7.11	
0.50	0.44	2.49	
-0.41	-1.59	-0.04	1.58
-1.55	-2.29	-0.55	0.49
-1.12	-0.49	-0.17	0.40
-0.02	0.42	1.35	

線径0	.7mm	(平均除熱量88.1W)			
	0.69	1.42	0.38		
-1.11	0.20	0.93	-0.44	0.36	
-1.77	-0.56	0.20	-0.70	-0.30	
-0.29	-0.33	0.41	0.13	0.18	
	0.26	0.83	-0.49		

流路中心部が遅く,壁面付近が速い.

⇒ 充填層における流速分布と同様の傾向を示した. 線径0.5mmと0.7mmの間で流動状況の変化点があると考えられる.

定まった流速分布を形成していない.

⇒ 充填層とみなせるほど流動抵抗がなかった可能性がある. 流速分布は充填形状に大きく影響を受ける. 流体が充填層の中心部に流れることで, 伝熱性能の向上に 12 繋がったと考えられる.